I’ve received several comments that my blog posts are no longer showing up in peoples’ RSS feeds. I’ve gone into my settings, and the blog is still set to full feed mode, so I don’t know why that would be. I’m trying to understand if the problem is widespread or only affects a few people. Please let me know in the comments section if new posts (since the potatoes and human health series) are not showing up in your reader. Also, please let me know if new posts are showing up. Thanks!
This is default featured slide 1 title
Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.
This is default featured slide 2 title
Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.
This is default featured slide 3 title
Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.
This is default featured slide 4 title
Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.
This is default featured slide 5 title
Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.
Saturday, 18 December 2010
Thursday, 16 December 2010
Interview with Chris Voigt of 20 Potatoes a Day

Introduction
Chris Voigt is the executive director of the Washington State Potato Commission, which supports and promotes the Washington state potato industry (1). On October 1st, Mr. Voigt began a two month, potato-only diet to raise awareness about the health properties of potatoes. It was partially in response to the recent decision by the federal WIC (Women, Infants and Children) low-income assistance program to remove potatoes from the list of vegetables it will pay for. Mr. Voigt’s potato diet has been a media sensation, leading to widespread coverage in several countries. He maintains a website and blog called 20 Potatoes a Day.
Diet Facts
For 60 days, Mr Voigt’s diet consisted of nothing but potatoes and a small amount of cooking oil (canola and olive), with no added nutritional supplements. Based on what he has told me, I estimate that 10-15% of his calories came from fat, 10% from protein and 75-80% from high-glycemic carbohydrate. His calorie intake ranged from 1,600 kcal (first 3 weeks) to 2,200 kcal (remaining 5.5 weeks) per day. Prior to the diet, he estimated that his calorie requirement was 2,200 kcal, so he attempted to stay as close to that as possible.
Health Markers
Mr. Voigt has posted the results of physical examinations, including bloodwork, from the beginning, middle and end of the diet. The change he experienced during that time is nothing short of remarkable. He shed 21 pounds, his fasting glucose decreased by 10 mg/dL (104 to 94 mg/dL), his serum triglycerides dropped by nearly 50%, his HDL cholesterol increased slightly, and his calculated LDL cholesterol dropped by a stunning 41% (142 to 84 mg/dL). The changes in his HDL, triglycerides and fasting glucose are consistent with improved insulin sensitivity (2, 3), and are not consistent with a shift of LDL particle size to the dangerous “small, dense” variety (4).
Interview
My best estimate is that it was probably a little better than the average US citizen only because of a high rate of produce consumption. I generally would eat about 10 servings of fruits and vegetables a day. But I ate everything else too. I would eat a wide range of food, a little bit of everything, including foods that aren’t considered “healthy”.You essentially ate nothing but potatoes, fat and flavorings for two months. Can you give us an idea of how much fat you were eating? What kind of fat was it?
I averaged about 2 tablespoons of cooking oil a day over the span of the 60 days. Canola oil was used for frying and olive oil was used for roasting.
Potatoes are pretty easy on the digestive system. I actually got a lot of emails from people who suffer from severe digestive disorders and literally, potatoes are the only thing they can eat. My 60 days of potatoes was nothing compared to some folks with these digestive disorders. I was getting a lot of fiber so things were pretty regular, but not too regular :)
Pants definitely became looser. I also noticed it in my neck size for shirts. I’m assuming most all of it was due to fat loss.
I was not meeting the goal of 2,200 calories a day during the first 3 weeks of the diet. During the first three weeks of the diet I only ate until I was full. I didn’t realize that potatoes would give me such a high sense of fullness after each meal. So for those first 3 weeks, I was only consuming about 1,600 calories a day. After the third week I had lost 12 pounds and realized that I needed to change strategy. I then began to eat more potatoes despite the sense of fullness I was experiencing. So for the remaining 5 ½ weeks I was very diligent about eating the 2,200 calories. I continued to lose weight but at a slower place. I lost an additional 9 pounds over the course of those remaining 5 ½ weeks. At the start of my diet I estimated, via a couple different on line calorie calculators, that I burn about 2,200 calories a day. Since I continued to lose weight, I’m assuming I actually burn closer to 2,800 calories a day. Something that may have also played a role in continued weight loss was the amount of resistant starch I was getting from potatoes. I ate a lot of cooked potatoes that had been refrigerated. These are generally higher in resistant starch. If I were to do the diet again, I would like to set up an experiment to gauge the effect of resistant starch.
I craved mostly foods that had a “juicy crunch”, like an apple, or cucumbers, or carrots, or celery. I never acquired a taste for raw potatoes so virtually all the potatoes I consumed were cooked. No matter how you cook your potatoes, you always get that same soft cooked texture. I craved foods with a crisper texture.
My energy level was very good the entire time of the diet. I really didn’t notice a change in energy at the start of the diet so I assumed that the potato diet didn’t have a positive or negative effect on my energy level. It wasn’t until I finished the diet and started to consume other foods that I noticed my energy level has seemed to drop a bit.
I felt really good on the diet. I had lots of energy, slept good at night, and seemed to avoid the cold viruses that circulated at home and work.The only unusual thing that occurred is what my wife told me. I’m a habitual snorer. The day I started eating only potatoes, my snoring stopped. It restarted the day I started to include other foods in my diet. I’m assuming it was just some weird coincidence but that’s what she tells me.My doctor and I expected my cholesterol to drop but not at the level we saw. I’ve had borderline high cholesterol for the past decade. I started the diet at 214 and saw it drop to 147 at the end of 60 days. We anticipated a drop of maybe 10-25 points. It was a huge surprise to see a 67 point drop.
No history of diabetes. My parents are in their early eighties and their parents lived to their 70’s and 80’s with no history of type one or two diabetes.
I would say that week 2 and 3 were probably the hardest. The first week was easy probably because of the novelty of the diet. Then reality set in for week 2 and 3. After that, I found my groove and it got easier. During the work week was easy but weekends, particularly Sunday’s, were the hardest. During the work week I did most of my eating at my desk so I wasn’t around a lot of other people eating or surrounded by other foods. Weekends were more difficult because I was around other people every meal and always had other foods in front of me at home.
I literally ate every kind of potato I could get my hands on. I ate yellow skin/yellow flesh potatoes, red skin/white flesh, red skin/red flesh, purple skin/white flesh, purple skin/purple flesh, russet potatoes with white flesh, russet potatoes with yellow flesh, white potatoes, yellow potatoes with white flesh, purple fingerlings, yellow fingerlings, red fingerlings and numerous experimental varieties.
I ate the skin at least 90% of the time if not more. There is a myth that all the nutrition in a potato is in the skin or right under the skin. That’s not true, there are nutrients spread throughout the potato but most of the fiber is located in the skin.
It really depended on the cooking method. For frying, I preferred russet potatoes. For baking, I preferred red potatoes. For mashed, I preferred yellow potatoes. For roasting, a toss-up between russets and reds.
As strange as it sounds, potatoes were my first two meals after my diet ended. I was saving my first non-potato meal for a special event that was planned at the local Head Start facility. The beef, dairy, apple, and potato producers put together a nice dinner event and nutrition workshop for all the kids and their parents at the Head Start center in Moses Lake. I still eat potatoes pretty regularly, but most of the time now I’m eating them with more than just seasonings.
Just a reminder that I’m not encouraging anyone to follow in my footsteps and eat just potatoes. This diet is not intended to be the next “fad” diet but was simply a bold statement to remind people that there is a tremendous amount of nutrition in a potato. There is no one food product that can meet all of your nutritional needs. I fully support a well balanced healthy diet, which potatoes can be a part of.In 2008, the United Nations declared it to be the “Year of the Potato”. This was done to bring attention to the fact that the potato is one of the most efficient crops for developing nations to grow, as a way of delivery a high level of nutrition to growing populations, with fewer needed resources than other traditional crops. In the summer of 2010, China approved new government policies that positioned the potato as the key crop to feed its growing population. The Chinese government formed a partnership with the International Potato Center in Peru to help them facilitate this new emphasis on the potato.
Saturday, 11 December 2010
Dr. Mellanby's Tooth Decay Reversal Diet

I have a lot of admiration for Drs. Edward and May Mellanby. A husband-and-wife team, they discovered vitamin D, and determined that rickets is caused by poor calcium (or phosphorus) status, typically due to vitamin D deficiency. They believed that an ideal diet is omnivorous, based on whole foods, and offers an adequate supply of fat-soluble vitamins and easily absorbed minerals. They also felt that grain intake should be modest, as their research showed that unsoaked whole grains antagonize the effect of vitamins D and A.
Not only did the Mellanbys discover vitamin D and end the rickets epidemic that was devastating Western cities at the time, they also discovered a cure for early-stage tooth decay that has been gathering dust in medical libraries throughout the world since 1924.
It was in that year that Dr. May Mellanby published a summary of the results of the Mellanby tooth decay reversal studies in the British Medical Journal, titled “Remarks on the Influence of a Cereal-free Diet Rich in Vitamin D and Calcium on Dental Caries in Children”. Last year, I had to specially request this article from the basement of the University of Washington medical library (1). Thanks to the magic of the internet, the full version of the paper is now freely available online (2).
You don’t need my help to read the study, but in this post I offer a little background, a summary and my interpretation.
In previous studies, the Mellanbys used dogs to define the dietary factors that influence tooth development and repair. They identified three, which together made the difference between excellent and poor dental health (from Nutrition and Disease):
- The diet’s mineral content, particularly calcium and phosphorus
- The diet’s fat-soluble vitamin content, chiefly vitamin D
- The diet’s content of inhibitors of mineral absorption, primarily phytic acid

Diet number 2 was similar to diet 1, except there was no extra oatmeal and the children received a large supplemental dose of vitamin D. Over 28 weeks, only 1 cavity per child developed or worsened, while 3.9 healed. Thus, simply adding vitamin D to a reasonable diet allowed most of their cavities to heal.
Diet number 3 was the most effective. This was a grain-free diet plus supplemental vitamin D. Over 26 weeks, children in this group saw an average of only 0.4 cavities form or worsen, while 4.7 healed. The Mellanbys considered that they had essentially found a cure for this disorder in its early stages.
What exactly was this diet? Here’s how it was described in the paper (note: cereals = grains):
…instead of cereals- for example, bread, oatmeal, rice, and tapioca- an increased allowance of potatoes and other vegetables, milk, fat, meat, and eggs was given. The total sugar, jam, and syrup intake was the same as before. Vitamin D was present in abundance in either cod-liver oil or irradiated ergosterol, and in egg yolk, butter, milk, etc. The diet of these children was thus rich in those factors, especially vitamin D and calcium, which experimental evidence has shown to assist calcification, and was devoid of those factors- namely, cereals- which interfere with the process.Carbohydrate intake was reduced by almost half. Bread and oatmeal were replaced by potatoes, milk, meat, fish, eggs, butter and vegetables. The diet is reminiscent of what Dr. Weston Price used to reverse tooth decay in his dental clinic in Cleveland, although Price’s diet did include rolls made from freshly ground whole wheat. Price also identified the fat-soluble vitamin K2 MK-4 as another important factor in tooth decay reversal, which would have been abundant in Mellanby’s studies due to the dairy. The Mellanbys and Price were contemporaries and had parallel and complementary findings. The Mellanbys did not understand the role of vitamin K2 in mineral metabolism, and Price did not seem to appreciate the role of phytic acid from unsoaked whole grains in preventing mineral absorption.
Here are two sample meals provided in Dr. Mellanby’s paper. I believe the word “dinner” refers to the noon meal, and “supper” refers to the evening meal:
Breakfast- Omelette, cocoa, with milk.In addition, children received vitamin D daily. Here’s Dr. Mellanby’s summary of their findings:
Lunch- Milk.
Dinner- Potatoes, steamed minced meat, carrots, stewed fruit, milk.
Tea- Fresh fruit salad, cocoa made with milk.
Supper- Fish and potatoes fried in dripping, milk.
Breakfast- Scrambled egg, milk, fresh salad.
Dinner- Irish stew, potatoes, cabbage, stewed fruit, milk.
Tea- Minced meat warmed with bovril, green salad, milk.
Supper- Thick potato soup made with milk.
The tests do not indicate that in order to prevent dental caries children must live on a cereal-free diet, but in association with the results of the other investigations on animals and children they do indicate that the amount of cereal eaten should be reduced, particularly during infancy and in the earlier years of life, and should be replaced by an increased consumption of milk, eggs, butter, potatoes, and other vegetables. They also indicate that a sufficiency of vitamin D and calcium should be given from birth, and before birth, by supplying a suitable diet to the pregnant mother. The teeth of the children would be well formed and more resistant to dental caries instead of being hypoplastic and badly calcified, as were those in this investigation.If I could add something to this program, I would recommend daily tooth brushing and flossing, avoiding sugar, and rinsing the mouth with water after each meal.
This diet is capable of reversing early stage tooth decay. It will not reverse advanced decay, which requires professional dental treatment as soon as possible. It is not a substitute for dental care in general, and if you try using diet to reverse your own tooth decay, please do it under the supervision of a dentist. And while you’re there, tell her about Edward and May Mellanby!
Preventing Tooth Decay
Reversing Tooth Decay
Images of Tooth Decay Healing due to an Improved Diet
Dental Anecdotes
Sunday, 5 December 2010
Interview with a Kitavan
Kitava is a Melanesian island that has maintained an almost entirely traditional, non-industrial diet until very recently. It was the subject of a study by Dr. Staffan Lindeberg and colleagues, which I have written about many times, in which they demonstrated that Kitavans have a very low (undetectable) rate of heart attack, stroke, diabetes and overweight. Dr. Lindeberg described their diet as consisting mostly of yam, sweet potato, taro, cassava, coconut, fruit, fish and vegetables. Over the seven days that Dr. Lindeberg measured food intake, they ate 69% of their calories as carbohydrate, 21% as fat (mostly from coconut) and 10% as protein.
I recently received an e-mail from a Kitavan by the name of Job Daniel. He’s working at the Papua New Guinea Institute of Medical Research in Madang, studying the social and economic impacts of malaria and related health issues in Papua New Guinea. He recalls many details of Dr. Lindeberg’s visit to Kitava, which Dr. Lindeberg has confirmed are correct. Job generously offered to answer some of my questions about the traditional Kitavan diet. My questions are in bold, and his responses are below.
How many meals a day do Kitavans eat?
People on the island eat mostly two meals a day. But nowadays, breakfast is mainly comprised of tubers (yam and sweet potato and greens all cooked in coconut cream and salt) and dinner is the same with the inclusion of fish as protein most often. In between these two meals, lunch is seen as a light refreshment with fruits or young coconut only to mention these two popular ones. In between the morning and the evening, we mostly eat fruits as snack or lunch. Generally speaking, there are only two main meals per day, i.e breakfast and dinner.
Do Kitavans eat any fermented food?
There are fermented fruits and nuts like you’ve said for breadfruit, nuts, yams and not forgetting fish. We ferment them by using the traditional method of drying them over the fire for months. And this fermented foods last for almost one to two years without getting stale or spoiled. Food preservation is a skill inherited from our great grand fathers taking into consideration the island’s location and availability of food. Foods such as bread fruit and fish are fermented and preserved to serve as substitutes to fresh food in times of trouble or shortage. Otherwise, they’re eaten along the way.
Is this really fermentation or simply drying?
To your query about the fermentation methods we use, apart from drying food over the fire, we also use this method like the Hawaiians do with taro [poi- SJG]. For our case we bury a special kind of fruit collected from the tree and buried in the ground to ripen, which takes about 2 - 3 days. I don’t really know the English name, but we call it ‘Natu’ in vernecular. There’s also a certain nut when it falls from the tree, women collect them and peel off the rotten skin, then mumu [earth oven- SJG] them in the ground covered with leaves to protect them from burning from the extreme heat of the fire, both from the open fire on top and hot stones underneath. After a day, the nuts are removed from the mumu and loaded into very big baskets which are then shifted to the sea for fermentation. This takes a week (minimum) to ferment or be ready for consumption at last. After the fermentation period is over, i.e one week some days or two
weeks to be exact, then the nuts are finally ready for eating. The length of time it takes before the nuts are no longer edible is roughly one week.
What parts of the fish are eaten?
As islanders, we eat almost every creature and body part of a sea creature. Especially fish eggs, it is one of the favorites of children. They always prefer it burnt on the fire and consumed greedily. Every part of the fish is eaten except for the feces, gall bladder, bones and the scales.
Is food shortage really rare on Kitava?
Generally speaking it is rare. BUT sometimes we run out of food only if there is a drought and the sea is useless. Otherwise, we tend to use the preserved or fermented foods on the dryer in the kitchen. As you would understand, we have seasons and they affect the type and availability of food on the island. In the beginning of the year, we eat sweet potato, cassava and mostly tuna for protein. During mid year, before yam comes in to replace sweet potato and cassava, taro is then ready for harvest. And then yams are ready for harvesting so the food supply is continued on. OK when yams are harvested, some are eaten, some are stored away for reserve and seedlings. In this way, we don’t run out food towards the end of the year before sweet potato would be ready for harvest. So as you can see, the food supply on the island is somewhat planned by our ancestral economists where it continues throughout the year without stopping.
Do Kitavans traditionally eat pork, and if so, how often?
We do eat pork but not that often because pork meat is chiefly regarded important on the island. We only eat pork on special occasions so I’d rather say that pork is only eaten occasionally. In most cases in the middle of the year when the yams are harvested (yam harvest celebrations and towards the end of the year for certain rites and activities). Otherwise the everyday meal is always topped with fish.
How long are infants breast fed on Kitava?
Women breast feed for a minimum of 2 years. But breast feeding is again determined by the size and health situation of the baby. If the baby is looking healthy and big, it is most likely that this baby would be adopted temporarily by someone else so as to be removed from breast milk after two years of age minimum. Child care nowadays is paramount as people start to realize the importance of health and hygiene in general. But Kitavans are well known in that part of the country for their hygiene practices. They also got the provincial and district awards for a 'clean community’ in early 90s and right now, they still maintain their hygiene level and awareness.
Are there any other foods that are commonly eaten on Kitava that I might not be aware of?
Bananas, pineapple, corn and watermelons. For watermelon and corn, they are plentiful especially at this time of the year.
Thanks for your help, Job! I know many people will appreciate reading these responses.
Thursday, 2 December 2010
Diet-Heart Controlled Trials: a New Literature Review
Many controlled studies have measured the cardiovascular effects of replacing animal (“saturated”) fats with seed oils (predominantly the omega-6 polyunsaturated fat linoleic acid) in humans. A number of these studies recorded heart attacks and total mortality during the following 1-8 years. Several investigators have done meta-analyses (literature reviews) to try to tease out overall conclusions from these studies.
I’m pleased to point out a new meta-analysis of these controlled trials by Dr. Christopher Ramsden and colleagues (1). This paper finally cleans up the mess that previous meta-analyses have made of the diet-heart literature. One recent paper in particular by Dr. Dariush Mozaffarian and colleagues concluded that overall, the controlled trials show that replacing animal fat with linoleic acid (LA)-rich seed oils reduces heart attack risk (2). I disagreed strongly with their conclusion because I felt their methods were faulty (3).
Dr. Ramsden and colleagues pointed out several fundamental flaws in the review paper by Dr. Mozaffarian and colleagues, as well as in the prevailing interpretation of these studies in the scientific literature in general. These overlap with the concerns that I voiced in my post (4):
- Omission of unfavorable studies, including the Rose corn oil trial and the Sydney diet-heart trial.
- Inclusion of weak trials with major confounding variables, such as the Finnish mental hospital trial.
- Failure to distinguish between omega-6 and omega-3 fatty acids.
- Failure to acknowledge that seed oils often replaced large quantities of industrial trans fats in addition to animal fat in these trials.
What did they find?
- Interventions that replaced animal and trans fat with seed oils that were rich in LA but low in omega-3 caused a non-significant trend toward increased heart attacks (13% increase) and overall mortality.
- Interventions that replaced animal and trans fat with a combination of LA and omega-3 fats significantly reduced heart attacks (by 22%). The numbers for total mortality followed a similar trend.
…experimental diets replaced common ‘hard’ margarines, industrial shortenings and other sources of [trans fat] in all seven of the [controlled trials] included in the meta-analysis by Mozaffarian et al. The mean estimated [trans fat] content of the seven control diets was 3·0 [% of calories] (range 1·5–9·6 [%]).In other words, it looks like trans fat is probably the issue, not animal fat, but these trials replaced both simultaneously so we can’t know for sure. I will note here that trans fat does not generally promote atherosclerosis (thickening and hardening of arteries) in animal models, so if it does truly increase heart attack risk as many studies suggest, it’s probably through a mechanism that is independent of atherosclerosis.
…the displacement of [trans fat], rather than the substitution of mixed n-3/n-6 [polyunsaturated fat] for [saturated fat], may account for some or all of the 22% reduction in non-fatal [heart attacks and heart attack] death in our meta-analysis. By contrast, the increased [heart attack] risks from n-6 specific [polyunsaturated fat] diets in our meta-analysis may be underestimated as n-6 [polyunsaturated fat] also replaced substantial quantities of [trans fat] (Table 3). The consistent trends towards increased [heart attack] risk of n-6 specific [polyunsaturated fat] diets may have become significant if the n-6 [polyunsaturated fat] replaced only [saturated fat], instead of a combination of [saturated fat] and [trans fat].
The article also contains an excellent discussion of the Finnish mental hospital trial (5, 6) and why it was excluded from the meta-analysis, in which Dr. Ramsden and colleagues point out major design flaws, some of which I was not aware of. For example, trans fat intake was on average 13 times higher in the control groups than in the experimental groups. In addition, one of the control groups received more than twice as much of the antipsychotic drug thioridazine, which is known to be highly toxic to the heart, as any other group. Ouch. I’m glad to see this study finally discussed in an open and honest manner. I discussed my own problems with the Finnish trial in an earlier post (7).
I was also glad to see an open discussion of the Oslo Diet-heart study (8), in which diet changes led to a reduction in heart attack risk over five years. Dr. Mozaffarian and colleagues included it in their analysis as if it were a controlled trial in which animal fat was replaced by seed oils only. In reality, the investigators changed many variables at once, which I had also pointed out in my critique of Dr. Mozaffarian’s meta-analysis (9). Here’s what Dr. Ramsden and colleagues had to say about it:
First, experimental dieters were instructed to substitute fish, shellfish and ‘whale beef’ for meats and eggs, and were actually supplied with ‘considerable quantities of Norwegian sardines canned in cod liver oil, which proved to be popular as a bread spread’(32)… Second, the experimental group consumed massive amounts of soybean oil, which provided large quantities of both LA (15·6 en %) and ALA (2·7 en %). ALA consumption was about 4·5 times average US intake(42), or about twelve typical flax oil pills (1 g pill ¼ 560 mg ALA) per d. In addition, the fish and cod liver oil consumption provided Oslo (598N latitude) dieters with 610 IU (15·25 mg) of daily vitamin D3, recently linked to lower blood pressure, plaque stabilisation, and reduced [heart attack risk] (64). Furthermore, experimental dieters were encouraged to eat more nuts, fruits, and vegetables; to limit animal fats; and to restrict their intake of refined grains and sugar.trans fat intake was also reduced substantially by excluding margarine in the experimental group. Other review papers have used this trial as a justification to replace animal fat with seed oils. Hmm… The only reason they get away with this is because the trial was published in 1966 and almost no one today has actually read it.
One criticism I have of Dr. Ramsden’s paper is that they used the Oslo trial in their analysis, despite the major limitation described above. However, they were extremely open about it and discussed the problem in detail. Furthermore, the overall result would have been essentially the same even if they had excluded the Oslo trial from the analysis.
Overall, the paper is an excellent addition to the literature, and I hope it will bring a new level of sophistication to the dialogue on dietary prevention of cardiovascular disease. In the meantime, brace yourselves for an avalanche of criticism from the seed oil brigade.
* Guidelines that determine which studies to include in the analysis. For example, you want to exclude any study that wasn’t randomized, because it will not be interpretable from a statistical standpoint. You also want to exclude trials where major variables differ between groups besides the specific variable you’re trying to test. The Finnish mental hospital trial fails by both criteria.
Monday, 29 November 2010
Choline and Fatty Liver
I’ve been writing about non-alcoholic fatty liver disorder (NAFLD) since the early days of this blog, because it’s an alarmingly common disorder (roughly a quarter of Americans affected) that is typically undiagnosed. It often progresses into its more serious cousin non-alcoholic steatohepatitis (NASH), an inflammatory condition that causes liver damage and can progress to cancer. In a number of previous posts, I pinpointed excess sugar and seed oil consumption as culprits in NAFLD and NASH (1, 2, 3, 4, 5).
Chris Masterjohn recently published two very informative posts on NAFLD/NASH that add a major additional factor to the equation: choline (6, 7). Choline is an essential nutrient that’s required for the transport of fat out of the liver (8). NAFLD can be caused, and cured, simply by removing or adding dietary choline, and it appears to be dominant over other dietary factors including fat, sugar and alcohol. Apparently, certain researchers have been aware of this for some time, but it hasn’t entered into the mainstream consciousness.
Could that be because the richest dietary sources are liver and eggs*? Choline is also found in smaller amounts in a variety of whole animal and plant foods. Most people don’t get the officially recommended amount. From a recent review article (9):
Mean choline intakes for older children, men, women, and pregnant women are far below the adequate intake level established by the [Institute of Medicine]. Given the importance of choline in a wide range of critical functions in the human body, coupled with less-than-optimal intakes among the population, dietary guidance should be developed to encourage the intake of choline-rich foods.I’ve dubbed beef liver the Most Nutritious Food in the World, Nature’s Multivitamin, and I’ll probably invent other titles for it in the future. Add yours to the comments.
Head over to Chris’s blog and read about the classic studies he unearthed. And add The Daily Lipid to your RSS reader, because there’s more interesting material to come!
The Sweet Truth about Liver and Egg Yolks
Does Choline Deficiency Contribute to Fatty Liver in Humans?
* For the brave: brain is actually the richest source of choline.
Tuesday, 16 November 2010
Impressions from the Wise Traditions Conference
I spent last weekend at the Weston A. Price Foundation Wise Traditions conference in King of Prussia, PA. Here are some highlights:
Spending time with several people in the diet-health community who I’ve been wanting to meet in person, including Chris Masterjohn, Melissa McEwen and John Durant. John and Melissa are the public face of the New York city paleo movement. The four of us spent most of the weekend together tossing around ideas and making merry. I’ve been corresponding with Chris quite a bit lately and we’ve been thinking through some important diet-health questions together. He is brimming with good ideas. I also got to meet Sally Fallon Morell, the founder and president of the WAPF.
Attending talks. The highlight was Chris Masterjohn’s talk “Heart Disease and Molecular Degeneration: the New Paradigm”, in which he described his compelling theory on oxidative damage and cardiovascular disease, among other things. You can read some of his earlier ideas on the subject here. Another talk I really enjoyed was by Anore Jones, who lived with an isolated Inuit group in Alaska for 23 years and ate a mostly traditional hunter-gatherer diet. The food and preparation techniques they used were really interesting, including various techniques for extracting fats and preserving meats, berries and greens by fermentation. Jones has published books on the subject that I suspect would be very interesting, including Nauriat Niginaqtuat, Plants that We Eat, and Iqaluich Niginaqtuat, Fish that We Eat. The latter is freely available on the web here.
I attended a speech by Joel Salatin, the prolific Virginia farmer, writer and agricultural innovator, which was fun. I enjoyed Sally Fallon Morell’s talk on US school lunches and the politics surrounding them. I also attended a talk on food politics by Judith McGeary, a farmer, attorney and and activist, in which she described the reasons to oppose or modify senate bill 510. The gist is that it will be disproportionately hard on small farmers who are already disfavored by current regulations, making high quality food more difficult to obtain, more expensive or even illegal. It’s designed to improve food safety by targeting sources of food-borne pathogens, but how much are we going to have to cripple national food quality and farmer livelihood to achieve this, and will it even be effective? I don’t remember which speaker said this quote, and I’m paraphrasing, but it stuck with me: “I just want to be able to eat the same food my grandmother ate.” In 2010, that’s already difficult to achieve. Will it be impossible in 2030?
Giving my own talk. I thought it went well, although attendance was not as high as I had hoped. The talk was titled “Kakana Dina: Diet and Health in the Pacific Islands”, and in it I examined the relationship between diet and health in Pacific island cultures with different diets and at various stages of modernization. I’ve covered some of this material on my blog, in my posts on Kitava, Tokelau and sweet potato eating cultures in New Guinea, but other material was new and I went into greater detail on food habits and preparation methods. I also dug up a number of historical photos dating back as far as the 1870s.
The food. All the meat was pasture-raised, organic and locally sourced if possible. There was raw pasture-raised cheese, milk and butter. There was wild-caught fish. There were many fermented foods, including sauerkraut, kombucha and sourdough bread. I was really impressed that they were able to put this together for an entire conference.
The vendors. There was an assortment of wholesome and traditional foods, particularly fermented foods, quality dairy and pastured meats. There was an entire farmer’s market on-site on Saturday, with a number of Mennonite vendors selling traditional foods. I bought a bottle of beet kvass, a traditional Russian drink used for flavor and medicine, which was much better than the beet kvass I’ve made myself in the past. Beets are a remarkable food, in part due to their high nitrate content—beet juice has been shown to reduce high blood pressure substantially, possibly by increasing the important signaling molecule nitric oxide. I got to meet Sandeep Agarwal and his family, owners of the company Pure Indian Foods, which domestically produces top-quality pasture-fed ghee (Indian-style clarified butter). They now make tasty spiced ghee in addition to the plain flavor. Sandeep and family donated ghee for the big dinner on Saturday, which was used to cook delicious wild-caught salmon steaks donated by Vital Choice.
There were some elements of the conference that were not to my taste. But overall I’m glad I was able to go, meet some interesting people, give my talk and learn a thing or two.
Tuesday, 9 November 2010
The Twinkie Diet for Fat Loss
The Experiment
I’ve received several e-mails from readers about a recent experiment by nutrition professor Mark Haub at Kansas State university (thanks to Josh and others). He ate a calorie-restricted diet in which 2/3 of his calories came from junk food: Twinkies, Hostess and Little Debbie cakes, Dorito corn chips and sweetened cereals (1). On this calorie-restricted junk food diet (800 calorie/day deficit), he lost 27 pounds in two months.
Therefore, junk food doesn’t cause fat gain and the only thing that determines body fatness is how much you eat and exercise. Right?
Discussion
Let’s start with a few things most people can agree on. If you don’t eat any food at all, you will lose fat mass. If you voluntarily force-feed yourself with a large excess of food, you will gain fat mass, whether the excess comes from carbohydrate or fat (2). So calories obviously have something to do with fat mass.
But of course, the situation is much more subtle in real life. Since a pound of body fat contains roughly 3,500 calories, eating an excess of 80 calories per day (1 piece of toast) should lead to a weight gain of 8 lbs of fat per year. Conversely, if you’re distracted and forget to eat your toast, you should lose 8 lbs of fat per year, which would eventually be dangerous for a lean person. That’s why we all record every crumb of food we eat, determine its exact calorie content, and match that intake precisely with our energy expenditure to maintain a stable weight.
Oh wait, we don’t do that? Then how do so many people maintain a stable weight over years and decades? And how do wild animals maintain a stable body fat percentage (except when preparing for hibernation) even in the face of food surpluses? How do lab rats and mice fed a whole food diet maintain a stable body fat percentage in the face of literally unlimited food, when they’re in a small cage with practically nothing to do but eat?
The answer is that the body isn’t stupid. Over hundreds of millions of years, we’ve evolved sophisticated systems that maintain “energy homeostasis”. In other words, these systems act to regulate fat mass and keep it within the optimal range. The evolutionary pressures operating here are obvious: too little fat mass, and an organism will be susceptible to starvation; too much, and an organism will be less agile and less efficient at locomotion and reproduction. Energy homeostasis is such a basic part of survival that even the simplest organisms regulate it.
Not only is it clear that we have an energy homeostasis system, we even know a thing or two about how it works. Early studies showed that lesioning a part of the brain called the ventromedial hypothalamus causes massive obesity (3; this is also true in humans, when a disruption results from cancer). Investigators also discovered several genetic mutations in rats and mice that result in massive obesity*. Decades-long research eventually demonstrated that these models have something in common: they all interfere with an energy homeostasis circuit that passes information about fat mass to the hypothalamus via the hormone leptin.
The leptin system is a classic negative feedback loop: the more fat mass accumulates, the more leptin is produced. The more leptin is produced, the more the hypothalamus activates programs to reduce hunger and increase energy expenditure, which continues until fat mass is back in the optimal range. Conversely, low fat mass and low leptin lead to increased hunger and energy conservation by this same pathway**.
So if genetic mutants can become massively obese, I guess that argues against the idea that voluntary food intake and energy expenditure are the only determinants of fat mass. But a skeptic might point out that these are extreme cases, and such mutations are so rare in humans that the analogy is irrelevant.
Let’s dig deeper. There are many studies in which rodents are made obese using industrial high-fat diets made from refined ingredients. The rats eat more calories (at least in the beginning), and gain fat rapidly. No big surprise there. But what may come as a surprise to the calorie counters is that rodents on these diets gain body fat even if their calorie intake is matched precisely to lean rodents eating a whole food diet (4, 5, 6). In fact, they sometimes gain almost as much fat as rodents who are allowed to eat all the industrial food they want. This has been demonstrated repeatedly.
How is this possible? The answer is that the calorie-matched rats reduce their energy expenditure to a greater degree than those that are allowed free access to food. The most logical explanation for this behavior is that the “set point” of the energy homeostasis system has changed. The industrial diet causes the rodents’ bodies to “want” to accumulate more fat, therefore they will accomplish that by any means necessary, whether it means eating more, or if that’s not possible, expending less energy. This shows that a poor diet can, in principle, dysregulate the system that controls energy homeostasis.
Well, then why did Dr. Haub’s diet allow him to lose weight? The body can only maintain body composition in the face of a calorie deficit up to a certain point. After that, it has no choice but to lower fat mass. It will do so reluctantly, at the same time increasing hunger, and reducing lean mass***, muscular strength and energy dedicated to tissue repair and immune function. However, I hope everyone can agree that a sufficient calorie deficit can lead to fat loss regardless of what kind of food is eaten. Dr. Haub’s 800 calorie deficit qualifies. I think only a very small percentage of people are capable of maintaining that kind of calorie deficit for more than a few months, because it is mentally and physically difficult to fight against what the hypothalamus has decided is in your best interest.
My hypothesis is that, in many people, industrial food and an unnatural lifestyle lead to gradual fat gain by dysregulating the energy homeostasis system. This “breaks” the system that’s designed to automatically keep our fat mass in the optimal range by regulating energy intake, energy expenditure and the relative partitioning of energy resources between lean and fat tissue. This system is not under our conscious control, and it has nothing to do with willpower.
I suspect that if you put a group of children on this junk food diet for many years, and compared them to a group of children on a healthy diet, the junk food group would end up fatter as adults. This would be true if neither group paid any attention to calories, and perhaps even if calorie intake were identical in the two groups (as in the rodent example). The result of Dr. Haub’s experiment does not contradict that hypothesis.
So do calories matter? Yes, but in a healthy person, all the math is done automatically by the hypothalamus and energy balance requires no conscious effort. In 2010, many people have already accumulated excess fat mass. How that may be sustainably lost is another question entirely, and a more challenging one in my opinion. As they say, an ounce of prevention is worth a pound of cure. There are many possible strategies, with varying degrees of efficacy that depend highly on individual differences, but I think overall the question is still open. I discussed some of my thoughts in a recent series on body fat regulation (7, 8, 9, 10, 11).
* ob/ob and db/db mice. Zucker and Koletsky rats. Equivalent mutations in humans also result in obesity.
** Via an increase in muscular efficiency and perhaps a decrease in basal metabolism. Thyroid hormone activity drops.
*** Loss of muscle, bone and connective tissue can be compensated for by strength training during calorie restriction. Presumed loss of other non-adipose tissues (liver, kidney, brain, etc.) is probably not affected by strength training.
Friday, 5 November 2010
Observations from France
I recently got back from a trip to the UK and France visiting family and friends. It was great to see everyone, eat great food and even do some unexpected foraging (chestnuts, mushrooms, walnuts, blackberries). French people are in better general health than most industrialized nations. The obesity, diabetes and heart disease rates are all considerably lower than in the US, although still much higher than in non-industrial cultures. Here are a few of my observations about French food:
- The French diet generally contains a lot of fat, mostly from traditional animal sources such as dairy and pork fat. Industrial seed oils have crept into the diet over the course of the 20th century, although not to the same degree as in most affluent nations. People seem to think that eating a lot of fat is unhealthy, particularly the younger generation, but they do it anyway. I had dinner with my family at a traditional restaurant in Lyon (a “bouchon Lyonnais” called Stepharo) last week. Before we ordered, they immediately brought out crispy fried chunks of pork skin and fat (I’m not claiming this is healthy!). The entree was a salad: a bed of lettuce piled high with chicken livers, herring, and “pig’s feet”. The pigs feet were essentially gobs of pork fat. It was a very good meal that I’ll continue describing later in the post. I think it’s worth pointing out that Lyon is in Southern France. Is this the “Mediterranean diet”?
- French people eat organs. Yes, they never got the memo that muscle meat is the only edible tissue. A typical butcher or even grocery store will have liver, tripe, kidney and blood sausage on full display next to the meat. If you want to make a French person angry, try selling them a chicken or a rabbit without the liver, gizzard and heart. The main course at Stepharo was a large “andouilette”, or tripe sausage, baked in mustard sauce. This was a typical traditional restaurant, not a hangout for gastronauts.
- French people fiercely defend the quality of their food. Have you heard of the abbreviation AOC? It stands for “Appellation d’Origine Contrôlée”, or controlled designation of origin. A familiar example is Champagne, which has the AOC label. You can’t call your sparkling wine Champagne unless it comes from the region Champagne. However, that’s only half the story. AOC also designates a specific, traditional production method, in this case called the “méthode champenoise.” The AOC label can apply to a variety of food products, including wine, butter, cheese, honey, mustard and seafood, and is a guarantee of quality and tradition. 44 cheeses currently have the AOC designation, and these are commonly available in markets and grocery stores throughout the country (1). These are not fancy products that only the wealthy can afford– many of them are quality foods that are accessible to nearly everyone. AOC defines many aspects of cheese production, often requiring a minimum amount of pasture time and specifying livestock breeds. The US has a few products that are regulated in a similar fashion, such as Bourbon whiskey, but generally we are far behind in assuring food quality and transparency.
- French people cook. There is less outsourcing of food processing in France, for several reasons. One reason is that restaurants are generally expensive. That trend is changing however.
Wednesday, 20 October 2010
Obesity and the Brain
Nature Genetics just published a paper that caught my interest (1). Investigators reviewed the studies that have attempted to determine associations between genetic variants and common obesity (as judged by body mass index or BMI). In other words, they looked for “genes” that are suspected to make people fat.
There are a number of gene variants that associate with an increased or decreased risk of obesity. These fall into two categories: rare single-gene mutations that cause dramatic obesity, and common variants that are estimated to have a very small impact on body fatness. The former category cannot account for common obesity because it is far too rare, and the latter probably cannot account for it either because it has too little impact*. Genetics can’t explain the fact that there were half as many obese people in the US 40 years ago. Here’s a wise quote from the obesity researcher Dr. David L. Katz, quoted from an interview about the study (2):
Let us by all means study our genes, and their associations with our various shapes and sizes… But let’s not let it distract us from the fact that our genes have not changed to account for the modern advent of epidemic obesity – our environments and lifestyles have.Exactly. So I don’t usually pay much attention to “obesity genes”, although I do think genetics contributes to how a body reacts to an unnatural diet/lifestyle. However, the first part of his statement is important too. Studying these types of associations can give us insights into the biological mechanisms of obesity when we ask the question “what do these genes do?” The processes these genes participate in should be the same processes that are most important in regulating fat mass.
So, what do the genes do? Of those that have a known function, nearly all of them act in the brain, and most act in known body fat regulation circuits in the hypothalamus (a brain region). The brain is the master regulator of body fat mass. It’s also the master regulator of nearly all large-scale homeostatic systems in the body, including the endocrine (hormone) system. Now you know why I study the neurobiology of obesity.
* The authors estimated that “together, the 32 confirmed BMI loci explained 1.45% of the inter-individual variation in BMI.” In other words, even if you were unlucky enough to inherit the ‘fat’ version of all 32 genes, which is exceedingly unlikely, you would only have a slightly higher risk of obesity than the general population.
Wednesday, 13 October 2010
Vacation
I’ll be out of town until the beginning of November, so I won’t be responding to comments or e-mails for a while. I’m going to set up a post or two to publish while I’m gone.
As an administrative note, I get a number of e-mails from blog readers each day. I apologize that I can’t respond to all of them, as it would require more time than I currently have to spare. The more concise your message, the more likely I’ll read it and respond. Thanks for your understanding.
Monday, 11 October 2010
Sleep Post Correction
An astute commenter pointed out that I misread the numbers in the paper on sleep and fat loss. I wrote that out of the total 3.0 kg lost, the high-sleep group lost 2.4 kg as fat, and the low-sleep group lost 1.4 kg of fat out of 2.9 kg total.
In fact, the high-sleep group lost 1.4 out of 2.9 kg as fat, and the low-sleep group lost 0.6 out of 3.0 kg as fat. So I got the numbers all mixed up. Sorry for the mistake. The main point of the post still stands though: sleep deprivation negatively influences body composition.
The correct numbers are even more interesting than the ones I made up. Even in the high-sleep group, nearly half the body weight lost by simple calorie restriction was lean mass. That doesn’t make calorie restriction look very good!
In the sleep-deprived group, 80% of the weight lost by calorie restriction came out of lean mass. Ouch!
That illustrates one of the reasons why I’m skeptical of simple calorie restriction as a means of fat loss. When the body “wants” to be fat, it will sacrifice lean mass to preserve fat tissue. For example, the genetically obese Zucker rat cannot be starved thin. If you try to put it on a severe calorie-restricted diet, it will literally die fat because it will cannibalize its own lean mass (muscle, heart, brain, etc.) to spare the fat. That’s an extreme example, but it illustrates the point.
The key is not only to balance energy intake with expenditure (which the brain does automatically when it’s working correctly), but to allocate energy appropriately to lean and fat mass.
Monday, 4 October 2010
The Big Sleep
This blog usually focuses on diet, because that’s my specialty. But if you want Whole Health, you need the whole package: a diet and lifestyle that is broadly consistent with our evolutionary heritage. I think we all know that on some level, but a recent paper has reminded me of it.
I somehow managed to get on the press list of the Annals of Internal Medicine. That means they send me embargoed papers before they’re released to the general public. That journal publishes a lot of high-impact diet studies, so it’s a great privilege for me. I get to write about the studies, and publish my analysis at the time of general release, which is the same time the news outlets publish their stories.
One of the papers they sent me recently is a fat loss trial with an interesting twist (1; see below). All participants were told to eat 10% fewer calories that usual for two weeks, however half of them were instructed to sleep for 8 and a half hours per night, and the other half were instructed to sleep for 5 and a half hours*. The actual recorded sleep times were 7:25 and 5:14, respectively.
Weight loss by calorie restriction causes a reduction of both fat and lean mass, which is what the investigators observed. Both groups lost the same amount of weight. However, 80% of the weight was lost as fat in the high-sleep group (2.4/3.0 kg lost as fat), while only 48% of it was lost as fat in the low-sleep group (1.4/2.9 kg lost as fat). Basically, the sleep-deprived group lost as much lean mass as they did fat mass, which is not good!
There are many observational studies showing associations between insufficient sleep, obesity and diabetes. However, I think studies like that are particularly vulnerable to confounding variables, so I’ve never known quite what to make of them. Furthermore, they often show that long sleep duration associates with poor health as well, which I find highly unlikely to reflect cause and effect. I discussed one of those studies in a post a couple of years ago (2). That’s why I appreciate this controlled trial so much.
Another sleep restriction trial published in the Lancet in 1999 showed that restricting healthy young men to four hours of sleep per night caused them to temporarily develop glucose intolerance, or pre-diabetes (3).
Furthermore, their daily rhythm of the hormone cortisol became abnormal. Rather than the normal pattern of a peak in the morning and a dip in the evening, sleep deprivation blunted their morning cortisol level and enhanced it in the evening. Cortisol is a stress hormone, among other things, and its fluctuations may contribute to our ability to feel awake in the morning and ready for bed at night.
The term “adrenal fatigue”, which refers to the aforementioned disturbance in cortisol rhythm, is characterized by general fatigue, difficulty waking up in the morning, and difficulty going to sleep at night. It’s a term that’s commonly used by alternative medical practitioners but not generally accepted by mainstream medicine, possibly because it’s difficult to demonstrate and the symptoms are fairly general. Robb Wolf talks about it in his book The Paleo Solution.
The investigators concluded:
Sleep debt has a harmful impact on carbohydrate metabolism and endocrine function. The effects are similar to those seen in normal ageing and, therefore, sleep debt may increase the severity of age-related chronic disorders.So there you have it. Besides making us miserable, lack of sleep appears to predispose to obesity and diabetes, and probably sets us up for the Big Sleep down the line. I can’t say I’m surprised, given how awful I feel after even one night of six hour sleep. I feel best after 9 hours, and I probably average about 8.5. Does it cut into my free time? Sure. But it’s worth it to me, because it allows me to enjoy my day much more.
Keep your room as dark as possible during sleep. It also helps to avoid bright light, particularly in the blue spectrum, before bed (4). “Soft white” bulbs are preferable to full spectrum in the evening. If you need to use your computer, dim the monitor and adjust it to favor warm over cool colors. For people who sleep poorly due to anxiety, meditation before bed can be highly effective. I posted a tutorial here.
1. Nedeltcheva, AV et al. “Insufficient Sleep Undermines Dietary Efforts to Reduce Adiposity.” Annals of Internal Medicine. 2010. Advanced publication.
* The study was a randomized crossover design with a 3 month washout period, which I consider a rigorous design. I think the study overall was very clever. The investigators used calorie restriction to cause rapid changes in body composition so that they could see differences on a reasonable timescale, rather than trying to deprive people of sleep for months and look for more gradual body fat changes without dietary changes. The latter experiment would have been more interesting, but potentially impractical and unethical.
Saturday, 2 October 2010
Potatoes and Human Health, Part III
Potato-eating Cultures: the Quechua
The potato is thought to have originated in what is now Peru, on the shores of lake Titicaca. Native Peruvians such as the Quechua have been highly dependent on the potato for thousands of years. A 1964 study of the Quechua inhabitants of Nuñoa showed that they obtained 74% of their calories from potatoes (fresh and chuños), 10% from grains, 10% from Chenopodia (quinoa and cañihua), and 4% from animal foods. Total energy intake was 3,170 calories per day (1).
In 2001, a medical study of rural Quechua men reported an average body fat percentage of 16.4% (2). The mean age of the volunteers was 38. Body fat did increase slowly with age in this population, and by age 65 it was predicted to be about 20% on average. That’s below the threshold of overweight, so I conclude that most men in this population are fairly lean, although there were a few overweight individuals.
In 2004, a study in rural Quechua women reported a body fat percentage of 31.2% in volunteers with a mean age of 35 (3). Body fat percentage was higher in a group of Quechua immigrants to the Peruvian capital of Lima. Among rural women, average fasting insulin was 6.8 uIU/mL, and fasting glucose was 68.4 mg/dL, which together suggest good insulin sensitivity and glucose control (4). Insulin and glucose were considerably lower in the rural group than the urban group. Blood pressure was low in both groups. Overall, this suggests that overweight is common among Quechua women.
Rural Quechua are characteristically short, with the average adult man standing no more than 5’ 2" (2). One might be tempted to speculate that this reflects stunting due to a deficient diet. However, given the fact that nearly all non-industrial populations, including contemporary hunter-gatherers, are short by modern standards, I’m not convinced the Quechua are abnormal. A more likely explanation is that industrial foods cause excessive tissue growth in modern populations, perhaps by promoting overeating and excessive insulin and IGF-1 production, which are growth factors. I first encountered this hypothesis in Dr. Staffan Lindeberg’s book Food and Western Disease.
I don’t consider the Quechua diet to be optimal, but it does seem to support a reasonable level of metabolic health. Rural Quechua men subsisting on potatoes are relatively lean, while women are often overweight, though less overweight than urban Quechua who eat fewer potatoes. Unfortunately, I don’t have more detailed data on other aspects of their health, such as gastrointestinal health.
Potato-eating Cultures: the Aymara
The Aymara are another potato-dependent people of the Andes, who span Peru, Bolivia and Chile. The first paper I’ll discuss is titled “Low Prevalence of Type II Diabetes Despite a High Body Mass Index in the Aymara Natives From Chile”, by Dr. Jose Luis Santos and colleagues (5). In the paper, they show that the prevalence of diabetes in this population was 1.5%, and the prevalence of pre-diabetes was 3.6%. The prevalence of both remained low even in the elderly. Here’s a comparison of those numbers with figures from the modern United States (6):That’s quite a difference! The prevalence of diabetes in this population is low, but not as low as in some cultures such as the Kitavans (7, 8).
Now to discuss the “high body mass index” referenced in the title of the paper. The body mass index (BMI) is the relation between height and weight, and often, but not always, reflects fatness. The average BMI of this population was 24.9, which is very close to the cutoff between normal and overweight (25).
Investigators were surprised to find such a low prevalence of diabetes in this population, despite their apparent high prevalence of overweight. Yet if you’ve seen pictures of rural native South Americans, you may have noticed they’re often built short and thick, with wide hips and big barrel chests. Could this be confounding the relationship between BMI and body fatness? To answer that question, I found another paper that estimated Aymara body fat using skinfold measurements (9). That study reported that both men and women remained relatively lean throughout life (ages 4-65), with only two of 23 subjects classified as overweight on the basis of body fat percentage, and none classified as obese.
Back to the first paper. In this Aymara group, blood pressure was on the high side. Serum cholesterol was also a bit high for a traditionally-living population, but still lower than most modern groups (~188 mg/dL). I find it very interesting that the cholesterol level in this population that eats virtually no fat was the same as on Tokelau, where nearly half of calories come from highly saturated coconut fat (10, 11). Fasting insulin is also on the high side in the Aymara, which is also interesting given their good glucose tolerance and low prevalence of diabetes. This could be related to differences in the measurement assay rather than a true difference in fasting insulin, since these assays were often not standardized between studies.
Together, this shows that a lifetime of high-carbohydrate, high-glycemic food does not necessarily lead to overweight or metabolic problems in the context of a traditional diet and lifestyle.
Potato-eating Cultures: the Irish
Potatoes were introduced to Ireland in the 17th century. They were well suited to the cool, temperate climate, and more productive than any other crop. By the early 18th century, potatoes were the main source of calories, particularly for the poor who ate practically nothing else. In 1839, the average Irish laborer obtained 87% of his calories from potatoes (12). In 1845, the potato blight Phytophthora infestans struck, decimating potato plantations nationwide and creating the Great Famine.
There isn’t much reliable information on the health status of the Irish prior to the famine, besides reports of vitamin A deficiency symptoms (13) due to the fact that neither of the primary articles of diet, potatoes and buttermilk, provide significant vitamin A. However, the Irish at the time had a very high fertility rate, and anecdotal reports described them as healthy and attractive (14):
As far as fecundity is concerned, the high nutritional value of the potato diet might have played a significant role, but little supportive evidence has been presented so far… What is known is that the Irish in general and Irish women in particular were widely described as healthy and good-looking. Adam Smith’s famous remark that potatoes were “peculiarly suitable to the health of the human constitution” can be complemented with numerous observations from other contemporary observers to the same effect.Controlled Feeding Studies
Starting nearly a century ago, a few researchers decided to feed volunteers potato-only diets to achieve various research objectives. The first such experiment was carried out by a Dr. M. Hindhede and published in 1913 (described in 15). Hindhede’s goal was to explore the lower limit of the human protein requirement and the biological quality of potato protein. He fed three healthy adult men almost nothing but potatoes and margarine for 309 days (margarine was not made from hydrogenated seed oils at the time), all while making them do progressively more demanding physical labor. They apparently remained in good physical condition. Here’s a description of one of his volunteers, a Mr. Madsen, from another book (described in 16; thanks to Matt Metzgar):
In order to test whether it was possible to perform heavy work on a strict potato diet, Mr. Madsen took a place as a farm laborer… His physical condition was excellent. In his book, Dr. Hindhede shows a photograph of Mr. Madsen taken on December 21st, 1912, after he had lived for almost a year entirely on potatoes. This photograph shows a strong, solid, athletic-looking figure, all of whose muscles are well-developed, and without excess fat. …Hindhede had him examined by five physicians, including a diagnostician, a specialist in gastric and intestinal diseases, an X-ray specialist, and a blood specialist. They all pronounced him to be in a state of perfect health.Dr. Hindhede discovered that potato protein is high quality, providing all essential amino acids and high digestibility. Potato protein alone is sufficient to sustain an athletic man (although that doesn’t make it optimal). A subsequent potato feeding study published in 1927 confirmed this finding (17). Two volunteers, a man and a woman, ate almost nothing but potatoes with a bit of lard and butter for 5.5 months. The man was an athlete but the woman was sedentary. Body weight and nitrogen balance (reflecting protein gain/loss from the body) remained constant throughout the experiment, indicating that their muscles were not atrophying at any appreciable rate, and they were probably not putting on fat. The investigators remarked:
The digestion was excellent throughout the experiment and both subjects felt very well. They did not tire of the uniform potato diet and there was no craving for change.In one of his Paleo Diet newsletters titled “Consumption of Nightshade Plants (Part 1)”, Dr. Loren Cordain referenced two feeding studies showing that potatoes increase the serum level of the inflammatory cytokine interleukin-6 (22, 23). However, one study was not designed to determine the specific role of potato in the change (two dietary factors were altered simultaneously), and the other used potato chips as the source of potato. So I don’t find these studies particularly relevant to the question at hand.
Just yesterday, Chris Voigt of the Washington State Potato Commission embarked on his own n=1 potato feeding experiment as a way to promote Washington state potatoes. He’ll be eating nothing but potatoes and a little fat for two months, and getting a full physical at the end. Check out his website for more information and updates (18). Mr. Voigt has graciously agreed to a written interview with Whole Health Source at the end of his experiment. He pointed out to me that the Russet Burbank potato, the most popular variety in the United States, is over 135 years old. Stay tuned for more interesting facts from Mr. Voigt in early December.
Observational Studies
With the recent interest in the health effects of the glycemic index, a few studies have examined the association between potatoes and health in various populations. The results are all over the place, with some showing positive associations with health, and others showing negative associations (19, 20, 21). As a whole, I find these studies difficult to interpret and not very helpful.
Anecdotes
Some people feel good when they eat potatoes. Others find that potatoes and other members of the nightshade family give them digestive problems, exacerbate their arthritis, or cause fat gain. I haven’t encountered any scientific research to substantiate claims that nightshades aggravate arthritis or other inflammatory conditions. However, that doesn’t necessarily mean there aren’t individuals who are sensitive. If potatoes don’t agree with you, by all means avoid them.
The Bottom Line
You made it to the end! Give yourself a pat on the back. You deserve it.
In my opinion, the scientific literature as a whole, including animal and human studies, suggests rather consistently that potatoes can be a healthy part of a varied diet for most people, and they probably do not generally promote digestive problems, fat gain, or metabolic dysfunction. Nevertheless, I wouldn’t recommend eating nothing but potatoes for any length of time. If you do choose to eat potatoes, follow these simple guidelines:
- Don’t eat potatoes that are green, sprouting, blemished, or damaged
- Store them in a cool, dark place. They don’t need to be refrigerated but it will extend their life
- Peel them before eating if you rely on them as a staple food